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Abstract

This paper considers the problem of viscous dissipation in the flow of Newtonian fluid through a tube of
annular cross section, with Dirichlet boundary conditions. The solution of the problem is obtained by a
series expansion about the complete eigenfunctions system of a Sturm-Liouville problem. Eigenfunctions
and eigenvalues of this Sturm-Liouville problem are obtained by Galerkin’s method.
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Introduction

The problem of viscous dissipation in the fluid flow through a tube of annular cross section has
many practical applications. An example is oil product transport through ducts; another is the
polymer processing [12].

This problem has constituted the object of many researches. Recently, Valko [11] has obtained
an approximate solution by means of a combined method which uses the Laplace transform and
Galerkin method. Other approaches of the problem have been given in [6], [9], [7].

In [1] we obtained an approximate solution of the problem of viscous dissipation in the case of
incompressible fluid flow through a circular cross section tube.

Now we will consider the flow of Newtonian fluid through a tube of annular cross section with
Dirichlet boundary conditions . At the entrance of tube the temperature of fluid is 7},. The walls
of radius 7, and r,, r; <r, are the same temperature. The flow is slow thus we can neglect the
heat transfer by conduction in flow direction. At the same time we will consider that the fluid
density p, specific heat C , and the heat transfer coefficient k are constant. The flow is related
to a polar spatial coordinate system, the Ox axis is along the tube axis, the radial coordinate

will be considered to be » and R is the radius of the tube. For the fluid velocity in the cross
section we will consider the expression

v(r):vo-f(r):vo-H:Lz— J-lnf—(:—i—lJlni—Z], )
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where v, is the maximum annular velocity.
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Given these conditions the energy equation is [4], [11]:
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where u is the dynamic viscosity of the fluid.

The aim of this article is to establish an approximate solution of equation (2), which verifies
certain initial and boundary conditions.

The plan of the article is: in section two we formulate the mathematical problem, section three
will contain the algorithm for the determination of eigenvalues and eigenfunctions (for the
Sturm-Liouville problem obtained by method of separation of variables) with Galerkin’s
method [2]; in the last section we will present the approximate solution of the problem and some
numerical results.

The Mathematical Problem

We associate to equation (2) the initial condition

x=0,T=T, 3)

and the boundary conditions
r=n,T=T,,(x>0) )
r=r,,T=T,,(x>0). )

It is suitable to rewrite the equation (2) and the initial and boundary conditions (3), (4), (5) in
dimensionless form. With the transformation group
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the equation (2) and the boundary conditions (3), (4), (5) become:
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It is easy to show that a particular solution of equation (7) which verifies conditions (9) and (10)
is:
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0=u+06, (12)
leads to the equation
ou 10 849
Sn)— (13)
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The unknown function u will satisfy the conditions (9) and (10) and the initial condition (8) is
replaced by:

y=0,u=-6,. (14)
The type of equation (13) and boundary conditions (9) and (10) allow us to apply the method of

separation of variables in order to determine function u. By this method the function u is
obtained under the form:

uty. =Y e, @, (nexpl 22y, (1s)
n=l1
where @, and A, are the eigenvalues and the eigenfunctions of Sturm-Liouville problem:
d( do
n—— |+ 40 fly) ®=0, (16)
dn\" dn
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The Application of Galerkin’s Method

For the determination of eigenfunctions and eigenvalues of Sturm-Liouville problem (16), (17)
we will apply Galerkin’s method. For this we consider the bilinear forms a(-,-) and b(-,-)

defined on H}(1,77,)x Hy(1,1,):

a(u,v) = —]9 ( q ] 7]. —uﬂd

1

; (18)
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We look for the eigenpair (1,®) which satisfies
®eHy(1,77,),D£0 )
. 17’
a(®,v)= 2" -b(®,v), (V)ve H(l)(l,f]o)
(17} is called a variational formulation of (17) [3].
We look for the solution of (17”) under the approximate form
()= a0, (), (19)

k=1
where neN" is the approach level of function @ and ((pk )keN* is a complete system of

functions in L,[1,7, ], functions which verify conditions [5]

(/7/((1):0’¢k(770):0ak€N*~ (20)
The unknown coefficients a,, k =1,n are determined if giving the conditions
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a®,,0,)=2b®,.0,), j=1n, Q1)
By applying these conditions we obtain the linear algebraic system in unknowna, , k = I,_n :

n

(g +22y b =0, j=1m, (22)

where =
a, ==alp,.0,). j.k=1n, (23)
By =bloe0,), jk=Tn. 4)

Because the system (22) must have nontrivial solutions, we obtain the equation
AnE|A+x23|=o, 25)

where 4 and B are the matrix 4 = (oc i )k,j:fn’ B= ([3 i )k,j:fn .

The solutions of equations (25) represent the approximate values, for the n approach level, for

the eigenvalues ?»21, % ,-~-,7\.2n.

The solutions of equation (25) are difficult to be obtained under this form. Consequently,
through elementary transformations of determinant A this equation takes the form [8]:

|c-x21n =0, (26)

where [, is the identity matrix of n order.

Unlike matrix 4 and B which are symmetric, matrix C does not have this property anymore.
Therefore we must adopt an adequate method for the determination of its eigenvalues [13].

In the following we will use the complete system of functions ((p k ) ren® 1IN Ly [1,770]:

¢’k(77):*]o(,uk'U)'Yo(ﬂk)_-]o(ﬂk)'yo(ﬂk"7)’ (27)

where J, and Y, are the Bessel function of the first and second kind and zero order

respectively and 4, ,k € N are the roots of equation:

Jo(ﬂ'ﬂo)'Yo(ﬂ)_Jo(ﬂ)'Yo(ﬂ'Uo)- (28)

The integrals which appear in formulas (23), (24) are calculated with a quadrature formula that
must be compatible with Galerkin’s method [10]. The eigenvalues of the Sturm-Liouville
problem obtained by this method are presented in the next section.

The eigenfunctions of the problem (18), (19) are the analytical form
q)i(n):zcij [‘]O(:uk '77)' Yo(ﬂk)_-]o(ﬂk)' YO(:uk 77)] s i= L_” (29
Jj=1

where (c;j,¢.y, -5 ), i=1,n are the eigenvecteurs of matrix 4+ A*B.

il» >%in

The Approximate Solution of the Problem

The unknown function u, for the n level of approximation of Galerkin’s method, is obtained
from (15) and (27):
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The coefficients c; ,i= I,_n from (30) are determined by the use of the condition (14) and by
considering that the solutions @, ,i= 1,_n of the problem (16), (17) are orthogonal with weight
n-f (77) on [1,770] [5]. Because functions @, ,i=1,_n are not obtained exactly, we prefer to

use orthogonality with weight 77 of functions ¢, , j zl,_n on [l,no].Thus, for the n level of

approximation, the constants c; ,i=1,n are determined by the resolution of the linear algebraic
system:

-0, 17 1) %0 )=y o) Y, -m)ld -
0 , k=Ln (31
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The final solution of the problem is obtained now by using relations (12), (15) and (30):
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Fig. 1. Dimensionless temperature profiles for M=1, n, =2,  =0,03...0,08

As an example we will consider 77, =2 and a fluid with M =1. The eigenvalues of Sturm-

Liouville problem (16), (17) are presented in table 1. The variation of dimensionless
temperature 0 given by (32) is presented in figure 1. In abscise axis there is the reduced radial
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distance n and in axis of ordinates there is presented the dimensionless temperature 6. The
variation of dimensionless temperature 0 is presented for some values of dimensionless
variable y .

Table 1. Eigenvalues of Sturm-Liouville problem
n 1 2 3 4 5 6 7 8 9 10

A2 | 5,64 12,36 19,09 | 25,83 32,57 | 39,31 46,05 52,70 | 59,53 66,27

n

The calculations have been realized for the approximation level n=10 and the algorithm
presents considerable stability.

As compared to Valko [11], the paper presents the advantage of a simpler algorithm which can
also be adapted to other boundary conditions (Dirichlet and Robin type conditions) by an
appropriate changing of the condition (17) and of the equation (28).

References

1. Boaca, T. - On Viscous Dissipation in Incompressible Fluid Flow Through a Circular Cross
Section Tube, The Annals of University “Dundrea de Jos” of Galati, Fascicle VIII, Tribology (to
appear)

2. Boaca, T. - Utilizarea metodei lui Galerkin pentru determinarea valorilor proprii ale problemei

Graetz-Nusselt, St. Cerc. Mec. Apl., 53, 6, pp. 549-560, 1994

3. Ciarlet, P.C., Lions, J.L. - Handbook of numerical analysis, vol. 11, Elsevier, 1991

4. Constantinescu, V.N. - Dinamica fluidelor viscoase in regim laminar, Ed. Academiei,
Bucuresti, 1987

5. Dinca, G. - Metode variationale si aplicatii, Ed. Tehnica, Bucuresti, 1980

6. Gottifredi, J.C., Quiroga, O.D., Floree, A.F. - Heat Transfer to Newtonian
and non-Newtonian Fluids flowing in a Laminar Regime, Int. J. Heat Mass Transfer, 26, pp. 1215-
1220, 1983

7. Johnston, P.R. - A Solution Method for the Graetz Problem for non-Newtonian Fluids with
Dirichlet and Neumann Boundary Conditions, Math. Comput. Model., 19, pp. 1-19, 1994

8. Oroveanu, T., Siro, B. - Un algorithme servant a résoudre le probléme de Sturm-Liouville
par la méthode de Galerkine dans le cas de 1’utilisation des systemes automatiques de calcul, Rev.
Roum. Sci. Techn.-Méc. Appl., 30, 2-3, pp. 161-172, 1985

9. Shih, Y.P., Tsou, J.D. - Extended Leveque Solutions for Heat Transfer to Power-law
Fluids in Laminar Flow in a Pipe, Chem. Eng. J., 15, pp. 55-62, 1978

10. Schiop, Al.l. - Analiza unor metode de discretizare, Edit. Academiei, Bucuresti, 1978

11. Valké, P.P. - Solution of the Graetz—Brinkman Problem with the Laplace Transform Galerkin
Method, Int J. Heat Mass Transfer, 48, pp. 1874-1882, 2005

12. Ybarra, R.M., Eckert, R.E. - Viscous Heat Generation in Slit Flow, 4iChe Journal, 26,
5, pp- 751-762, 1980

13. William, H.P. - Numerical Recipes in Pascal, Cambridge University Press, Cambridge, 1989

Asupra disipatiei vascoase in migcarea unui fluid newtonian
printr-un tub de sectiune inelara

Rezumat

In acest articol este studiati problema disipatiei viscoase in miscarea unui fluid newtonian printr-un tub
de sectiune inelard, cu conditii la limita de tip Dirichlet. Solutia problemei este obtinutd sub forma unei
serii dupa sistemul complet de functii proprii al unei probleme de tip Sturm-Liouville. Valorile proprii §i
functiile proprii ale acestei probleme Sturm-Liouville sunt obtinute cu metoda lui Galerkin.



